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Relaxation of a supercooled low-density Coulomb fluid

S. D. Wilke and J. Bosse*
Freie Universität Berlin, Institut für Theoretische Physik, Arnimallee 14, D-14195 Berlin, Germany

~Received 6 July 1998!

A system of charged hard spheres in front of a homogeneous neutralizing background is studied at low
densities using mode-coupling theory. A ‘‘Wigner glass’’ phase, the amorphous analog of the Wigner crystal
recently found in experiments, is predicted. The melting curve of the Wigner glass obeysn}T3, and the
particle localization length is much larger than the Lindemann criterion would predict. An analysis of transport
properties shows that huge effective particle diameters are responsible for the glassification at low densities.
The Stokes-Einstein relation, which is obeyed by the high-density fluid, implies large Stokes radii at low
densities.@S1063-651X~99!02702-6#

PACS number~s!: 64.70.Pf, 66.10.2x, 66.20.1d
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I. INTRODUCTION

The density at which solids can be formed from ind
vidual particles is limited by the range of their interactio
potential. Short-range forces can only bind particles at h
densities, while long-range forces, e.g., the Coulomb inte
tion, are capable of forming solids even at very low den
ties. Back in 1938, Wigner predicted the existence of suc
low-density Coulomb solid for electron systems, the s
called Wigner crystal@1#. Recently, the first, to our knowl
edge, experimental realizations of Wigner crystals have b
found, not only in electron systems@2# but, for example, with
charged colloidal particles in aqueous solution@3# and
charged dust particles in plasmas@4,5#.

However, it may be possible that low-density solids
not always have a crystalline structure. As already poin
out by Aoki @6#, there may also beamorphouslow-density
solids, for which the term ‘‘Wigner glass’’ seems approp
ate. Figure 2 of Ref.@5#, for example, shows a structure th
could be interpreted as somewhere in between crystalline
amorphous phase. Experimentally, the Wigner glass ph
could be reached—in analogy to the well-known hig
density glass phase—by supercooling~or supercompressing!
a low-density Coulomb fluid. Because of this analogy,
seems reasonable to attempt a theoretical description o
Wigner glass using the same concepts that are employe
the glass transition athigh densities, for example the mode
coupling theory~MCT! @7,8#, which has been very succes
ful in describing the glass transition of fragile glass-formi
liquids.

It was shown in a previous publication@9# that MCT in-
deed predicts a low-density glass phase for the so-called
stricted primitive model~RPM!, a two-component symmetri
cal charged hard-sphere system. Further studies have
revealed that the ability of forming a Wigner glass from
binary fluid of charged particles depends neither on cha
ratio, nor on diameter ratio or mass ratio@10#. The MCT
phase diagrams of binary and one-component charged h
sphere systemsall show a low-density glass phase. This r
sult supports the view that it is the long-ranged Coulo
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interaction potential that is mainly responsible for the form
tion of a Wigner solid.

In this paper, we will give a detailed account of the resu
of MCT for one specific model system which seems suita
for comparison with experiments: a fluid of charged ha
spheres in front of a homogeneous neutralizing backgrou
This model system, which we will refer to as hard-sphe
jellium ~HSJ!, is very similar to the well-known one
component plasma~OCP!, and could be used to describ
dusty plasmas and colloidal systems in which Wigner cr
tals have been observed.

The paper is organized as follows: Following this intr
duction, we present a summary of MCT for the HSJ in S
II. Our results include a fluid-glass phase diagram~Sec. III!,
Debye-Waller factors~Sec. IV!, relaxation behavior~Sec.
V!, and transport properties~Sec. VI! of the HSJ. A critical
review of the obtained results is given in the conclusion
Sec. VII.

II. FORMAL FRAMEWORK

Starting point of the theoretical analysis of the HSJ is
classical, homogeneous, isotropictwo-component fluid of
oppositely charged particles, the second species of whic
to become the homogeneous background. The MCT for s
a two-component fluid is formulated in terms of the Kub
relaxation functions

F̂ss8~q;t !ªb^dN~s!~q,t !†dN~s8!~q!& ~1!

of the partial number density fluctuationsdN(s)(q)ª
N(s)(q)2^N(s)(q)& with N(s)(q)ª( j 51

Ns exp@2iq•r j
(s)#/ANs,

wheres51,2 is the species index,Ns the number of particles
of speciess, bª1/(kBT), and^¯& denotes a thermal equi
librium average. The thermodynamic limit is to be taken
the end of the calculations. With the help of the Mo
Zwanzig projection-operator method@11,12# a formally ex-
act equation of motion is derived for the matrix of relaxati
functionsF̂(q;t) resulting in

F̂~q,z!5 2$z2@z1K̂~q,z!# 21
• V̂2~q!%21

• F̂~q;t50! ~2!
1968 ©1999 The American Physical Society
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PRE 59 1969RELAXATION OF A SUPERCOOLED LOW-DENSITY . . .
for the matrix of Fourier-Laplace transformsF̂(q,z)
ª i*0

`dtexp(itz)F̂(q;t). The initial condition for the relax-

ation function is given by the matrixŜ(q) of the partial static
structure factors, i.e.,F̂(q;t50)5bŜ(q). The frequency
matrix V̂2(q) can also be expressed in terms of the sta
structure,

V̂ss8
2

~q!ª
q2

bms

@Ŝ21~q!#ss8 , ~3!

wherems is the particle mass of speciess. Within MCT, the
matrix of relaxation kernelsK̂(q,z) is approximated as the
sum

K̂~q,z!5K̂ reg~q,z!1K̂MC~q,z! ~4!

of a regular contributionK̂ reg(q,z), with zK̂ss8
reg(q,z)→0 for

small z, and a mode-coupling part describing the nonline
feedback of density fluctuations on the relaxation,

K̂MC~q;t !ss85(
k,p

(
s,s851

2

(
m,m851

2

V̂~ss8q;ss8k;mm8p!

3F̂mm8~p;t !F̂ss8~k;t !, ~5!

V̂~ss8q;ss8k;mm8p!

ª

1

V

dp,q2k

2b3ms

@kidsmAnsĉsm~k!1pidssAnmĉms~p!#

3@kids8m8Ans8ĉs8m8~k!1pids8s8Anm8ĉm8s8~p!#.

~6!

The functionĉss8(q) is the Ornstein-Zernike direct correla
tion function, nsªNs /V denotes the partial mean numb
density of speciess, while kiªk–q/q and piªp–q/q. The
mode-coupling contribution to the memory kernel will b
responsible for the extremely slow relaxation of density flu
tuations near the glass transition. A more detailed descrip
of the mode-coupling approximation for multicompone
systems can be found in Ref.@13#. Since K̂MC(q;t) is ex-
pressed in terms of the relaxation function itself, Eq.~2!
becomes a closed nonlinear integro-differential equation
be solved numerically forF̂(q;t). The only input informa-
tion required are the static structure factorsŜss8(q).

To introduce a neutralizing background to the tw
component system described by Eqs.~2!, ~5!, and ~6!, spe-
cies 2 is ‘‘smeared out’’ across the system by sett
ĝ12(r )[1 and ĝ22(r )[1 for the corresponding matrix ele
ments of the radial distribution function. This results in
greatly simplified static structure,

Ŝ~q!5S S~q! 0

0 1D , ĉ~q!5S c~q! 0

0 0D , ~7!

whereS(q)ªŜ11(q) andc(q)ª ĉ11(q)5@12S11(q)21#/n1.
The frequency matrix, Eq.~3!, takes on the form
c

r

-
n

t

to

g

V̂2~q!5S V2~q! 0

0 0D , V2~q!ª
q2

bm1S~q!
. ~8!

The vertex functionV̂(ss8q;ss8k;mm8p) from Eq.~6! van-
ishes unlesss5s85s5s85m5m851. Therefore, only the
(1,1) elements ofF̂(q;t) and K̂MC(q;t) are nonzero,

F̂~q;t !5:S F~q;t ! 0

0 0D , K̂MC~q;t !5:S KMC~q;t ! 0

0 0D .

~9!

This means that the background does not show mo
coupling effects and thus no slowing down of relaxation p
cesses when approaching the glass transition. The equ
of motion, Eq.~2!, decouples into two scalar equations if th
regular part of the memory kernel can be neglected. This
be the case for times beyond the microscopic time scale
the glass transition, resulting in a complete decoupling of
particle motion from the background dynamics. The expli
form of the mode-coupling relaxation kernel, Eqs.~5! and
~6!, reduces to

KMC~q;t !5(
kp

V~q;k;p!F~k;t !F~p;t !, ~10!

V~q;k;p!ªV̂~1,1,q;1,1,k;1,1,p!

5
n1

b3m1

1

V
dp,q2k@kic~k!1pic~p!#2. ~11!

Since, in the HSJ considered here, the background should
contribute to the packing fractionhªpns3/6 ~where n
5n11n2 is the total particle density ands the particle di-
ameter!, its concentration is put equal to zero. In this lim
n15n and KMC(q;t) takes on the form known from one
component systems@7#.

The long-time limit of the normalized relaxation functio
f(q;t)ªF(q;t)/F(q;t50), usually denoted byf (q) and
referred to as the Debye-Waller factor, characterizes the
rest of density fluctuations and can thus be used to determ
whether the system is a glass@ f (q)Þ0# or a fluid @ f (q)
[0#. Making use of f(q;t5`)52 limz→ i0zf(q,z), the
Debye-Waller factor can be obtained from Eq.~2! in the
limit z→ i0,

f ~q!5
1

11 V2~q!/KMC~q;t5`!
. ~12!

Note thatKMC(q;t5`) still containsf (q) according to Eq.
~10!, so that Eq.~12! has to be solved iteratively forf (q).

III. PHASE DIAGRAM

Using the mean spherical approximation solution fro
Ref. @14# for the HSJ static structure factorS(q), Eq. ~12!
was solved numerically on a 301-point wave number m
for f (q) at different thermodynamic parameters. The resu
ing fluid-glass phase diagram is shown in Fig. 1 as a plo
the critical packing fractionhc as a function of the plasma
parameterGª2A3 h/T* with the reduced temperatureT*
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1970 PRE 59S. D. WILKE AND J. BOSSE
ªkBT4pe0s/(Ze)2. Ze is the charge of the hard spheres
First, note that in the weak-coupling limitG→0, the criti-

cal packing fraction approaches 0.516, the value known fr
neutral hard-sphere systems@15#. This was expected becaus
the S(q) used in the present calculation is known to a
proach the Percus-Yevick neutral hard-sphere structure
tor in the weak coupling limit. Physically, the reason is th
the Coulomb energy can be neglected compared to the
mal energy in this limit, leaving an effectively uncharge
system.

In the high-density regime, our calculation reproduces
transition points recently found by Lai and Chang@16#, ex-
cept for one data point. The HSJ shows a reentrant phen
enon in the temperature interval 0.002,T* ,0.01: Upon iso-
thermally expanding the high-density glass along the d
dashed line in Fig. 1, the system first melts, but th
temporarily re-enters a glass phase before finally mel
again to stay in the fluid phase for all lower densities. Sim
reentrant phenomena have been found in mode-coup
studies of the RPM@9#, of screenedcharged hard sphere
@17# provided that the screening length was chosen su
ciently large, and in a theoretical investigation of mac
ionic suspensions@18#. In the low-density part of the reen
trant region, 1023,h,531025, the HSJ glass transition
curve exhibits a power lawh}Ga with an exponenta
'8.14. So far, neither this behavior nor the reentrant p
nomenon could be explained theoretically.

Even for very low densities,h,1026, mode-coupling ef-
fects obviously still lead to a structural arrest of the fluid
charged particles if temperature is sufficiently low. This
rather surprising, because the static structure factor does
exhibit any peaks in this limit—inhigh-densityliquids, the
first peak inS(q), reflecting a close packing of the system
was considered to be the driving factor for the glass tra
tion @7,19#.

The melting curve of the HSJ takes on the formG
5const, orhc}(Tc* )3, for h,1027. This result can be un
derstood from the fact that the static structure takes on De
form,

FIG. 1. Fluid-glass phase diagram for the HSJ~dashed!, the
RPM ~dotted!, and neutral hard spheres~solid!. Ordinate: packing
fraction h; abscissa: plasma parameterG. Circles are transition
points taken from Ref.@16#. Dot-dashed:h(G) at fixed temperature
T* 50.005.
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SD~q!5
q2

q21qD
2

, cD~q!52
1

n

qD
2

q2
, ~13!

in the low-density limit, where qD
2
ªn(Ze)2/(e0kBT)

524h/(T* s2), i.e., 1/qD is the Debye-Hu¨ckel screening
length. Inserting Eq.~13! into the MCT expression for the
Debye-Waller factor, Eq.~12!, one obtains

f ~q!

12 f ~q!
5

qD
4

n~q21qD
2 !V

3(
k

~kip21pik2!2

k2~k21qD
2 !p2~p21qD

2 !
f ~k! f ~p!,

~14!

with pªq2k. Rescaling the wave numbers byqD , the de-
pendence onh andT* reduces to the wave number scale a
to a single coupling parameterqD

3 /n}G3/2 in front of the
integral. Thus, a glass transition must occur at some fixedGc
in the Debye region of the phase diagram. We findGc
'13.0 for the critical plasma parameter of the HSJ.

The phase diagram of the RPM from Ref.@9# is also in-
cluded to demonstrate that the qualitative form, and in p
ticular the ability to form a Wigner glass, do not depend
the specific model system. This supports our view that
reentrant phenomenon and the Wigner glass found in
RPM are not artifacts of a model system but general featu
of Coulomb systems caused by mode-coupling effects.

IV. DEBYE-WALLER FACTOR

Some of the Debye-Waller factors that were calcula
along the phase transition line of Fig. 1 are shown in Fig
The corresponding input information, the structure fac
S(q), is plotted in Fig. 3. For the high-density glass pha
f (q) has the form known from previous calculations@16#,
especially the dominant peak atq'7s21 reflecting the cor-
responding close-packing peak in the structure factorS(q).
As the critical density is decreased, this peak shifts to low

FIG. 2. Critical Debye-Waller factorsf c(q) of the HSJ as a
function of wave numberq. Curves correspond to (h'0.516, G
'9.476) ~solid!, (h'0.120,G'167.6) ~dotted!, (h'0.005 06,G
'36.33) ~dashed!, and (h'0.3931025, G'15.74) ~long-dashed!.
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PRE 59 1971RELAXATION OF A SUPERCOOLED LOW-DENSITY . . .
wave numbers and its height decreases. This is also the
for the S(q) peak, signaling the decay of the close-pack
structure of the high-density glass.

At very low densities, where the static structure takes
Debye form, Eq.~13!, f (q) becomes extremely narrow. Th
can be understood directly from rescaling Eq.~14! as ex-
plained in connection with theT3 behavior of the transition
line. It is found that in the Debye limit, the critical Debye
Waller factor can be written asf D(q/qD), wheref D is a fixed
master function, while the relevant wave number scaleqD
vanishes likeh1/3 for h→0 on the transition line. In contras
to the static structure, which exhibits no peaks at all, th
remains a peak in the Debye-Waller factor atq'qD .

The propertyf (q50)50, which is clearly visible in Fig.
2, is due to momentum conservation. This can be see
follows: Overall momentum conservation requires the de
minant of the matrixK̂MC(q;t5`) to vanish like q2 for
small wave numbers, a condition that is obeyed by the mo
coupling approximation@13#. It is clear from the derivation
of Sec. II, however, that the background species does
carry any momentum. This leaves the momentum conse
tion condition for the matrix element for species 1 only,

KMC~q;t5`!}q2 for q→0. ~15!

The fact thatV2(q) approaches the~non-vanishing! plasma
frequencyvpl

2 5(Ze)2n/(e0m1) in this limit thus leads to
f (q50)50 via Eq.~12!. This property, which results from
the idealization of a homogeneous background, has an
portant consequence for the HSJ as a model system. S
the mass- and charge-density relaxation functionsfM(q;t)
and fC(q;t) are identical tof(q;t) in this system,f (q
50)50 impliesfC(q50; t5`)50. This means that long
wavelength plasma oscillations cannot be arrested and
dielectric constante51/fC(q50; t5`) of the HSJ will be
infinite always, even in the glass phase. The same state
holds for the OCP.

From the Debye-Waller factors calculated at the transit
point, the Go¨tze exponent parameterl can be obtained@20#.
It characterizes the dynamical behavior predicted by M
near the glass transition. To calculate the exponent par

FIG. 3. Structure factorS(q) of the HSJ for the sameh andG
as in Fig. 2.
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eter, the~nondegenerate, properly normalized! right and left
eigenvectorse(q) and ê(q), respectively, of the stability
matrix

C~q,k!ª@12 f ~k!#2(p2b2S~k!S~p!V~q;k;p! f ~p!/V2~q!

have to be determined at a transition point using an app
priate wave vector mesh. The exponent parameter of
transition point is then obtained from

lª(
qkp

ê~q!b2S~k!S~p!V22~q!V~q;k;p!

3@12 f ~k!#2@12 f ~p!#2e~k!e~p!, ~16!

and the exponentsa andb of the power laws that appear i
the solution of Eq.~2! are determined by the equationG(1
2x)2/G(122x)5l, which has the solutionsx5a and x5
2b. Figure 4 shows a plot of the values ofl, together with
the corresponding exponentsa and b, along the transition
line. For high temperatures, the exponent parameter
proaches the limiting value 0.734, which is in agreem
~relative deviation'3%) with the value 0.758 found fo
neutral hard spheres@15#. As conjectured by Go¨tze @19#, l
varies only between 0.5 and 1 in the whole density ran
studied. At small densitiesh,1024, l takes on extraordi-
narily small values (l,0.6), which leads to almost exponen
tial relaxation behavior to be discussed in the next sectio

V. RELAXATION BEHAVIOR

Using the same static structure as in Sec. IV, Eqs.~2! and
~5! were solved iteratively for 540 time mesh points and 1
wave numbers. The regular part of the relaxation kern
which determines the short-time dynamics and the ove
time scale of the solutions only, was assumed to be diago
with K̂11

reg(q;t)52d(t)vpl(qs)2. This order of magnitude
was found in previous studies on the OCP@21#.

A typical result for the~partial-! density relaxation func-
tion f(q;t) for low densities is shown in Fig. 5 as a plot
a fixed wave numberq0 as the system approaches the flu
glass transition ath'0.10331024. The critical long-time

FIG. 4. HSJ exponent parameterl ~solid! and characteristic
exponentsa ~dotted line! andb ~dashed! as functions of the critical
packing fractionhc .
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1972 PRE 59S. D. WILKE AND J. BOSSE
limit f c(q0)'0.455 expected at the transition point is clea
visible as a plateau value. By analyzing the MCT equatio
analytically @20,19#, one finds thatf(q0 ;t) approaches
f c(q0) as a power law}t2a. This initial relaxation process is
referred to asb relaxation. At a strongly temperature
dependent timeta ,f(q0 ;t) drops down from the platea
with another power law}2tb, and approaches zero. Th
latter process is the so-calleda relaxation or primary relax-
ation. Thea-relaxation time scaleta is predicted to obey the
power law ta}(T2Tc)

2g with the exponentgª1/(2a)
11/(2b). To demonstrate that these predictions hold for
numerically calculated function, the two asymptotic pow
laws are also included in Fig. 5, and the transition point w
approached using temperaturesTn* with (Tc* 2Tn* )/Tc*
532n, n51,2,3, . . . . This leads to ana-relaxation time
that increases by constant factors.

If properly rescaled, the relaxation function of the sup
cooled low-density fluid looks qualitatively similar to th
relaxation functions known from systems near the hig
density glass transition. As mentioned in Sec. IV, the r
evant length scale gets larger and larger at low densi
Therefore,f(q;t) ~considered as a function ofq) becomes
increasingly narrow in the low-h region. It is remarkable
however, to see that in the low-density Coulomb fluid w
find oscillations off(q;t) with time t which are reminiscen
of the ~long-wavelength! plasma oscillation. Such oscilla
tions are characteristic of the long-range Coulomb poten
They have neither appeared in supercooled binary mixtu
of neutral particles~cf. Fig. 6 of Ref.@22#! nor in the high-
density region~where Coulomb interactions are suppress!
of the present system~cf. Fig. 7.1 of Ref.@23#!.

The small valuel50.543 predicted for the transition a
h50.10331024 leads toa50.382 andb50.916. The expo-
nent b that rules the primary relaxation is therefore sign
cantly larger than known from high-density systems, wh
l'0.750 impliesb'0.558. This results in a comparab
abrupt drop from the plateau value at the beginning of
a-relaxation process and a relaxation that is much close
the simple exponential Debye relaxation than the stretchea

FIG. 5. Density relaxation functionf(q0 ;t) of low-density HSJ
at q05s21. Curves correspond toh'0.10331024, (T*
2Tc* )/Tc* 532n for n51, . . .,11, and Tc* '0.002 71. Dotted:
power law 0.45510.2t2a29.1310210tb with a50.382 and b
50.916.
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relaxation known from supercooled high-density liquids. T
small values of the exponent parameterl shown in Fig. 4 for
low h imply that the primary relaxation is almost Debye-lik
for all densitiesh,1024.

Apart from the peculiarity of almost-exponential rela
ation, all predictions that were derived for the liquid-gla
transition at higher densities@20,19#, e.g., the factorization of
time- and wave number dependence inf(q0 ;t)2 f c(q0) for
long times, continue to be valid at low densities. It must
mentioned that the extremely small valuesl,0.6 at low
densities are a special feature of the HSJ, and were not fo
in the RPM, wherel50.77 in the low-density limit@10#.
Therefore, the exponential relaxation should not be con
ered as an universal prediction of MCT for Wigner glass
but rather as a special feature of the HSJ model syst
Nevertheless, it is an interesting question whether it is fou
experimentally, because this would allow an estimation
the relevance of the MCT/HSJ model system for Wign
glass experiments.

VI. TRANSPORT PROPERTIES

A. Diffusion

The mobility of individual particles within the fluid is
described by the diffusion constantD. This parameter should
be easily accessible in Wigner glass experiments, becau
can be measured directly from the observation of particle
the fluid. Theoretically,D is determined by the incoheren
relaxation function Fs(q;t)ªb^exp$iq•@r0

(1)(t)2r0
(1)(t

50)#%& for qÞ0, which can be obtained within MCT by
solving the set of equations@7#

Fs~q,z!5
2b

z1 q2v th
2 /z1Ks~q,z!

, ~17!

Ks~q,z!5Ks
reg~q,z!1Ks

MC~q,z!, ~18!

Ks
MC~q;t !5

v th
2 n

b2

1

V(
k

ki
2c~k!2F~k;t !Fs~ uq2ku;t !,

~19!

where v th
2
ª1/(bm1) denotes the thermal particle velocity

Note that the coherent relaxation functionF(q;t) must be
known beforeFs(q;t) can be determined. The frequenc
dependent generalized diffusion constantD(v) is given by

D~v!5 lim
q→0

ImH 2v th
2

v1Ks~q,v1 i0 !
J . ~20!

AssumingKs
reg(q;t)520vpld(t), Equations~17!–~19! were

solved iteratively. The resulting diffusion constant is plott
in Fig. 6. The most striking feature is the rapid decrease
the static valueD5D(v50) as the glass transition is ap
proached. MCT predicts a vanishing ofD with a power law
(T2Tc)

g near the glass transition, whereg is the exponent
defined in section V@20#. This behavior is clearly visible in
the inset of Fig. 6. Physically, the vanishing ofD upon ap-
proaching the low-density glass transition can be underst
by considering that diffusion is blocked by rapidly increasi
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effective particle diameters. Neglecting screening effects,
average thermal energy atG510 andh51026, e.g., allows
two particles to approach each other no closer than about
times the particle diameter! Even if the systemlooks very
dilute, it is a strongly overlapping packing of soft effectiv
Coulomb spheres. The slowing down of diffusion proces
due to this effect will eventually prohibit crystallization o
the low-density fluid experimentally if it is cooled rapidl
enough, and is therefore responsible for the glass trans
at low densities.

The two power laws that rule the frequency depende
of D(v) can be explained by considering the asympto
solution for Fs(q;t) at the transition point@20#. One finds
D(v)}v12b in thea-relaxation region, andD(v)}v11a in
the frequency range corresponding tob relaxation, which is
clearly reproduced by our numerical calculations. If the
power laws are identified in experimental data, the values
the exponentsa andb could be used to determine the exp
nent parameterl experimentally.

B. Localization length

On the glassy side of the transition, the particles are
calized, so thatD50. Here, the motion of a single tagge
particle can be characterized by its localization lengthr 0,

r 0
2
ª

1
3 lim

t→`
^@r0

~1!~ t50!2r0
~1!~ t !#2&52 lim

q→0

]2f s~q!

]q2
,

~21!

where f s(q)ª limt→`Fs(q;t)/b denotes the long-time limi
of the tagged particle relaxation function, the Lam
Mößbauer factor. Despite of its complicated calculation,
function f s(q) turns out to be very similar to a simple Gaus
ian, f s(q)'exp(2 1

2r0
2q2). This well-known fact for the high-

density glass@7# continues to be valid even at very low de
sities.

The localization lengthr 0 at melting obtained from the
Lamb-Mößbauer factor is plotted in Fig. 7 along the tran
tion line. An empirical rule for the relation between meltin
of a solid and the localization length is the Lindemann cri

FIG. 6. Generalized diffusion constantD(v) of the HSJ for the
same parameters (h,T* ) as in Fig. 5. Dashed: MCT power law
asymptote 2.031029v12b10.35v11a with a and b as in Fig. 5.
Inset:D as a function of (T* 2Tc* )/Tc* ~circles!. Solid: power law
1.5@(T* 2Tc* )/Tc* #g with gª1/(2a)11/(2b)51.852.
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rion @24#, which predicts melting ifr 0 exceeds 10% of the
particle diameter. As found in previous studies on differe
model systems@7,25#, the high-density glass transition pre
dicted by MCT is in agreement with this criterion. At low
densities, however, the localization length of particles in
Wigner solid can be much greater than predicted by the L
demann criterion. Our calculations predict a criticalr 0 of
about 2.3s at h51026, for example. Such large values fo
r 0 have also been observed experimentally, e.g., in the vi
images shown in Ref.@26#. These results indicate that th
particles of a Wigner solid are trapped in extremely fl
extended potential minima.

Similarly to the Debye-Waller factors, the Lamb
Mößbauer factorsf s(q) will also fall onto a single maste
function if rescaled by the Debye shielding lengthq D

21 .
Thus, their curvature atq50, which is proportional tor 0,
should diverge as 1/qD}1/A3 h along the transition line,
whereh→0 andT* }h1/3. The inset of Fig. 7 demonstrate
that this property is correctly reproduced by our numeri
results.

C. Shear viscosity

The most striking signature of the high-density glass tr
sition is the dramatic increase of the shear viscosityhs of the
fluid. Therefore, it is an important question whether this
crease is also predicted for the supercooled fluid at low d
sities as the Wigner glass phase is approached. Within M
hs can be calculated without any further approximatio
from the transversal current relaxation kernel@19#

K'
MC~q;t !5(

kp
V'~q;k;p!F~k;t !F~p;t !, ~22!

V'~q;k;p!ª
n

b3m1

1

V
dp,q2kk'

2 @c~k!22c~k!c~p!#,

~23!

which can be obtained from the relaxation functionF(q;t).
The frequency-dependent generalizationhs of the shear vis-
cosity is then given by

FIG. 7. HSJ localization length at melting as function of tem
peratureT* ~solid! and Lindemann criterionr 050.1s ~dashed!.
Inset: Same data as a function ofh ~solid!, and power law
0.02h21/3 ~dot-dashed!.
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hs~v!5m1n lim
q→0

Im K'~q,v1 i0 !

q2
. ~24!

Note that in the units we use, the shear viscosityhs is related
to the kinematic viscositynªhs/(nm1) by

n

@s2vpl#
5

p

6h

hs

@m1vpl /s#
. ~25!

The shear viscosityhs(v) was calculated from the relax
ation functions of Fig. 5 under the assumption that the re
lar part of the transversal current relaxation kernel
K'

reg(q;t)52vpld(t). The resulting functions, which ar
plotted in Fig. 8, look qualitatively like the viscosities know
from the high-density liquid-glass transition. MCT predicts
divergence of thehs proportional to (T2Tc)

2g as the tran-
sition is approached. This property is demonstrated in
inset of Fig. 8. Note thatg is the same exponent that go
erned the behavior of the diffusion constantD @20#. Simi-
larly to the behavior ofD(v), hs(v) also exhibits power
laws in the frequency ranges ofa and b relaxation. The
corresponding exponents can be shown to be2b21 anda
21, respectively. The viscosity of the low-density fluid tur
out to be several orders of magnitude smaller than that
high-density liquid at a comparable separation from the tr
sition point.

It seems counterintuitive to obtain an infinite shear visc
ity for a Wigner glass, which one imagines to be a loo
matrix of relatively ‘‘soft’’ spheres. However, it is generall
accepted for the high-density liquid-glass transition that
divergence of the shear viscosity is an artifact of idealiz
MCT. The results of this version of the theory are only va
in a region of low to intermediate viscosity, which we expe
to be the case for the Wigner glass as well. The actual ra
of validity of idealized MCT for supercooled low-densit
fluids can only be determined experimentally—a challen
for plasma and colloid physicists.

FIG. 8. Generalized shear viscosityhs(v) of the HSJ for the
same parameters (h,T* ) as in Fig. 5. Dashed: MCT power law
asymptote 1.0310212v2b2112.031024va21 with a and b as in
Fig. 5. Inset:hs as a function of (T* 2Tc* )/Tc* ~circles!. Solid:
power law 1024@(T* 2Tc* )/Tc* #2g with g as in Fig. 5.
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Having calculated the diffusion constant and the sh
viscosity, we will now make use of the Stokes-Einstein re
tion

D5
kBT

4phsR
, ~26!

known from liquid physics to obtain the Stokes radiusR
5R(h,T* ) measuring the effective particle size. The Co
lomb fluid near the glass transition does not obey the kin
theory of gases even at low densities, because the long-r
interactions remain strong and cannot be neglected in c
parison to the kinetic energy of particles. Therefore, it
reasonable to assume for the supercooled fluid a relation
tween D and hs of the Stokes-Einstein form even at lo
densities. We calculatedR in the vicinity of three different
glass-transition points in the (h,T* ) plane and obtained
R/(s/2)'0.8, 13104, and 23105 at high (h'0.51), inter-
mediate (h'0.1031024), and low (h'0.8631028) den-
sity, respectively.

At high densities and correspondingly high temperatur
the Coulomb interaction is strongly suppressed, and we
that the Stokes radius is roughly equal to the hard-core
dius. This means that MCT predicts validity of the Stoke
Einstein relation for the HSJ at high densities, a result tha
supported by a molecular dynamics simulation of unchar
soft spheres@27# also reporting that the relation is well ful
filled in the supercooled region.

The long-range Coulomb force will become effective
temperature is decreased. It will be the dominant interac
near the low-density glass transition. At low densities a
cording to our results above, the Stokes radiusR takes on
values much larger than the hard-core radiuss/2 and even
larger than the average available-sphere radius (4pn/3)21/3.
This can be understood by the following argument. The
Coulomb particles discussed in Sec. VI A will, due to t
long range of interactions, have an overlap with very ma
neighboring fluid particles. The diffusion constantD for such
an inflated particle is expected to be small even if the v
cosityhs of the fluid is still relatively low. According to Eq.
~26!, this implies a large Stokes radiusR.

VII. CONCLUSION

In view of experiments, it is important to judge the re
evance of the results of our study carefully. First of all, n
ther quantum nor relativistic effects are relevant in the lo
density region of the phase diagram. A major point
criticism may be that theidealizedform of MCT was used,
which is known to neglect hopping diffusion and to yield
sharp transition into a nonergodic glass phase. We ar
however, that the obtained results are still relevant. Hopp
diffusion processes occurred only ‘‘occasionally’’ in th
Wigner crystal@5#. Assuming an average hopping time
tH5104 s for an individual particle and a microscopic tim
scale oft0'1024 s, suggests that there are several deca
of time evolution in Fig. 5 which are not influenced by ho
ping diffusion. Taking hopping processes into account in
extended MCT@19# will change the relaxation behavior o
the supercooled fluid only quantitatively without destroyi
qualitative aspects such as plateau formation anda and b
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relaxation. Although the experimental relevance of the s
gularity that appears in idealized MCT is still being di
cussed controversially, the transition point of idealized MC
has always correctly signaled the onset of glassification
high-density systems. Thus, we expect the formation o
low-density glass in real systems in the proximity of o
calculated transition curve.

On the other hand, we cannot derive any statements
the actual range of validity of the power law prediction
Theoretically, they become validasymptotically, i.e., for
‘‘small’’ separation from the transition point—possibly in
region where idealized MCT is no longer experimentally r
evant. This point should always be kept in mind when int
preting experimental results using MCT. However, expe
ence from high-density liquids tells us that some asympt
MCT predictions, depending on the system studied, seem
have been observed in experiments@28#.

In summary, we have found that mode-coupling theo
predicts a low-density amorphous solid phase of the H
The transition is expected to occur atG'13 in the low-
density regionh,1027. The HSJ exhibits the reentrant ph
nomenon found in mode-coupling studies of the RPM@9#
.
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and of screened charged hard spheres@17#. The relaxation is
qualitatively similar to that predicted for the higher-dens
liquid-glass transition, except for an almost exponentiala
relaxation. We proposed the picture of a packing of lar
effective spheres caused by Coulomb repulsion in
Wigner glass, which is supported by a vanishing of the d
fusion constant as the glass transition is approached and
very large Stokes radius.

It is very exciting that Wigner crystals were found
dusty plasmas, where individual particles can be studied
ing optical microscopes. The realization of Wignerglassesin
such systems would be a major breakthrough in the rese
on the glass transition, because one could ‘‘see’’ how
individual particles become localized within the glassy m
trix. Until today, rather complicated and expensive scatter
experiments are the only source of microscopic informat
on the glass transition.
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