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Relaxation of a supercooled low-density Coulomb fluid
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A system of charged hard spheres in front of a homogeneous neutralizing background is studied at low
densities using mode-coupling theory. A “Wigner glass” phase, the amorphous analog of the Wigner crystal
recently found in experiments, is predicted. The melting curve of the Wigner glass abdys and the
particle localization length is much larger than the Lindemann criterion would predict. An analysis of transport
properties shows that huge effective particle diameters are responsible for the glassification at low densities.
The Stokes-Einstein relation, which is obeyed by the high-density fluid, implies large Stokes radii at low
densities[S1063-651X99)02702-4

PACS numbe(s): 64.70.Pf, 66.10-x, 66.20:+d

[. INTRODUCTION interaction potential that is mainly responsible for the forma-
tion of a Wigner solid.
The density at which solids can be formed from indi- In this paper, we will give a detailed account of the results

vidual particles is limited by the range of their interaction of MCT for one specific model system which seems suitable
potential. Short-range forces can only bind particles at higffor comparison with experiments: a fluid of charged hard
densities, while long-range forces, e.g., the Coulomb interacspheres in front of a homogeneous neutralizing background.
tion, are capable of forming solids even at very low densi-This model system, which we will refer to as hard-sphere
ties. Back in 1938, Wigner predicted the existence of such #llium (HSJ, is very similar to the well-known one-
low-density Coulomb solid for electron systems, the so-component plasm&OCP), and could be used to describe
called Wigner crystal1]. Recently, the first, to our knowl- dusty plasmas and colloidal systems in which Wigner crys-
edge, experimental realizations of Wigner crystals have beel@ls have been observed.

found, not only in electron systerfig] but, for example, with The paper is organized as follows: Following this intro-
charged colloidal particles in aqueous solutip®] and  duction, we present a summary of MCT for the HSJ in Sec.
charged dust particles in plasmas5s]. II. Our results include a fluid-glass phase diagregec. llI),

However, it may be possible that low-density solids doDebye-Waller factorgSec. 1V), relaxation behavio(Sec.
not always have a crystalline structure. As already pointed/), and transport propertigSec. V) of the HSJ. A critical
out by Aoki [6], there may also bamorphousiow-density ~ review of the obtained results is given in the conclusion in
solids, for which the term “Wigner glass” seems appropri- S€c. VII.
ate. Figure 2 of Ref[5], for example, shows a structure that
could be interpreted as somewhere in between crystalline and
amorphous phase. Experimentally, the Wigner glass phase
could be reached—in analogy to the well-known high- Starting point of the theoretical analysis of the HSJ is a
density glass phase—by supercooliiog supercompressifig classical, homogeneous, isotropiwo-component fluid of
a low-density Coulomb fluid. Because of this analogy, itoppositely charged particles, the second species of which is
seems reasonable to attempt a theoretical description of the become the homogeneous background. The MCT for such
Wigner glass using the same concepts that are employed far two-component fluid is formulated in terms of the Kubo
the glass transition dtigh densities, for example the mode- relaxation functions
coupling theory(MCT) [7,8], which has been very success-

Ifiuqll,llir:jsd_escnbmg the glass transition of fragile glass-forming B oo (i) = BN (.0 TONE (@) B

It was shown in a previous publicatidd] that MCT in-
deed predicts a low-density glass phase for the so-called ref the partial number density fluctuationdN®(q):=
stricted primitive mode{RPM), a two-component §ymmetri- NG (q)—(NO(q)) with N®(q) ==2;\IileXF[—iq-r,(S)]/ JN.,
cal charged hard-sphere system. Further studies have thgfheres=1,2 is the species indeX., the number of particles
revealed that the ability of forming a Wigner glass from aof speciess, g:=1/(kgT), and(--) denotes a thermal equi-
binary fluid of charged particles depends neither on charggprium average. The thermodynamic limit is to be taken at
ratio, nor on diameter ratio or mass rafib0]. The MCT  the end of the calculations. With the help of the Mori-
phase diagrams of binary and one-component charged hargyanzig projection-operator methdd1,12 a formally ex-

splhere systemzll show ahlow-d_ensrity Iglass phasg. Thi? re;Dact equation of motion is derived for the matrix of relaxation
sult supports the view that it is the long-ranged Coulom unctions (q:t) resulting in

Il. FORMAL FRAMEWORK

* Author to whom correspondence should be addressed. d(q,2)= —{z—[z+K(q2)] - O}t d(qit=0) (2)
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for the matrix of Fourier-Laplace transformﬁ)(q,z) 2
:=if§,°dtexp(itz)<i>(q;t). The initial condition for the relax-
ation function is given by the matri®(q) of the partial static
structure factors, i.e.®(q;t=0)=85(q). The frequency The vertex functioV/(ss' q; oo’ k; uu'p) from Eq.(6) van-

matrix 32(q) can also be expressed in terms of the statidshes unless=s’=co=¢'=u=pu'=1. Therefore, only the

. Q%(q) ) q
0?%(q)= . Q%q)i=——.
( 0 0 @ Bm;S(q)

®

structure, (1,1) elements ofb(q;t) andKMC(q;t) are nonzero,
R 2 . d(q;t) 0} KMC(g;t) 0
Qisr(q)==;—m[8‘l(q)]ssr, 3 QI>(0|:t)=:( 0 o)’ KMC(q;t)=: 0 o)'
) 9)

wherems is the particle mass of speciesWithin MCT, the 1.5 means that the background does not show mode-

matrix of relaxation kernel&(q,z) is approximated as the coupling effects and thus no slowing down of relaxation pro-
sum cesses when approaching the glass transition. The equation

. . . of motion, Eq.(2), decouples into two scalar equations if the

K(d,2)=K"™q,2)+K"%(q,2) (4)  regular part of the memory kernel can be neglected. This will

R R be the case for times beyond the microscopic time scale near
of a regular contributiorkK™¥q,z), with zK;eS%’(q,z)—>0 for  the glass transition, resulting in a complete decoupling of the
small z, and a mode-coupling part describing the nonlineaparticle motion from the background dynamics. The explicit
feedback of density fluctuations on the relaxation, form of the mode-coupling relaxation kernel, EqS) and
(6), reduces to

2 2
KM(gitee=2 > 2 V(ssSgoo'kuu'p)
P o= =1 Kmmm=%vmmm¢mmem (10
XD, (p)D .0 (K1), (5) A
V(q:k;p)=V(1,19;1,1k;1,1p)
V(ssq;o0'k;up'p) n, 1

=3y Spa-kLkic(k) + pic(p)]? (11

1 5p,q—k ~ ~ B ml

=y 5 K105 Co(K) + Py 851, C0(P)] o _

2p°mg Since, in the HSJ considered here, the background should not

- - contribute to the packing fractiom:=mno>/6 (where n
XK 8y VN1 Cor o (K) P81 g1 VN Cppr o (P)]- =n,+n, is the total particle density and the particle di-

(6)  ametey, its concentration is put equal to zero. In this limit,
n;=n and KMS(q;t) takes on the form known from one-

The functioncsy(q) is the Ornstein-Zernike direct correla- component systen(s].
tion function, ng:=N¢/V denotes the partial mean number  The long-time limit of the normalized relaxation function
density of species, while k;:=k-g/q and p,:=p-q/q. The  #(q;t):=P(q;t)/®(q;t=0), usually denoted by(q) and
mode-coupling contribution to the memory kernel will be referred to as the Debye-Waller factor, characterizes the ar-
responsible for the extremely slow relaxation of density fluc-rest of density fluctuations and can thus be used to determine
tuations near the glass transition. A more detailed descriptiowhether the system is a glag$(q) #0] or a fluid [f(q)

of the mode-coupling approximation for multicomponent=0]. Making use of ¢(q;t=2)=—1im,_;sz¢(q,z), the
systems can be found in RdfL3]. SinceKMC(q;t) is ex- Debye-Waller factor can be obtained from E® in the
pressed in terms of the relaxation function itself, gg  limit z—i0,

becomes a closed nonlinear integro-differential equation to

be solved numerically fo(q;t). The only input informa- f(q)= 1 _ (12)
tion required are the static structure fact&eg (q). 1+ Q3(q)/KM(g;t=20)

To introduce a neutralizing background to the two- hatkMC(q:t= i insf di
component system described by E¢®, (5), and (6), spe-  Note thatk™(g;t=<) still containsf(q) according to Eq.
cies 2 is “smeared out” across the system by setting!1Q)» SO that Eq(12) has to be solved iteratively fdi(q).

01(r)=1 andg,,(r)=1 for the corresponding matrix ele-

ments of the radial distribution function. This results in a Il PHASE DIAGRAM

greatly simplified static structure, Using the mean spherical approximation solution from
Ref. [14] for the HSJ static structure fact&®(q), Eq. (12

é(q):(S(Q) O) - :<c(q) 0) 7y was solved numerically on a 301-point wave number mesh

0 1)’ 0o o) for f(q) at different thermodynamic parameters. The result-

ing fluid-glass phase diagram is shown in Fig. 1 as a plot of
whereS(q) :=S,4(q) andc(q):=c;1(q)=[1—S;4(q) *]/n,.  the critical packing fractiony, as a function of the plasma
The frequency matrix, Eq3), takes on the form parameterl":=23/7/T* with the reduced temperaturg*
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FIG. 1. Fluid-glass phase diagram for the H@lasheg the FIG. 2. Critical Debye-Waller factor§®(q) of the HSJ as a

RPM (dotted, and neutral hard spherésolid). Ordinate: packing function of wave numbeq. Curves correspond ton~0.516,T
fraction »; abscissa: plasma parameter Circles are transition ~9.476) (solid), (7~0.120,I'~167.6) (dotted, (~0.005 06,I"

points taken from Ref.16]. Dot-dashedz(I") at fixed temperature  ~36.33) (dashed} and (y~0.39x 10”5, I'~15.74) (long-dashel
T*=0.005.

2
q 10p
:=kgT4meqol/(Ze)?. Ze is the charge of the hard spheres. So(a) = o co(a)=—1

. . > Of ! re +q5’ n g’
First, note that in the weak-coupling linit— 0, the criti-
cal packing fraction approaches 0.516, the value known fromy, e low-density limit, where qu:=n(Ze)2/(eokBT)
neutral hard-sphere systefii$]. This was expected because =247/(T*0?), i.e., 1hp is the Debye-Haokel screening

the S(q) used in the present calculation is known to ap-jength. Inserting Eq(13) into the MCT expression for the
proach the Percus-Yevick neutral hard-sphere structure fagepye-Waller factor, Eq(12), one obtains

tor in the weak coupling limit. Physically, the reason is that

(13

the Coulomb energy can be neglected compared to the ther- f(q) q‘é
mal energy in this limit, leaving an effectively uncharged 1-1(q) = 2
system. n(g”+ap)V
In the high-density regime, our calculation reproduces the (k,,p2+ kaz)z
transition points recently found by Lai and Charid], ex- T 2 o 2 [(Kf(p),
cept for one data point. The HSJ shows a reentrant phenom- k' k“(k“+ap)p“(p+dp)
enon in the temperature interval 0.60Z* <0.01: Upon iso- (14)

thermally expanding the high-density glass along the dot-

dashed line in Fig. 1, the system first melts, but thenwith p:=q—k. Rescaling the wave numbers by, the de-
temporarily re-enters a glass phase before finally meltinggendence om andT* reduces to the wave number scale and
again to stay in the fluid phase for all lower densities. Similarto a single coupling parametgg/nocrfﬂz in front of the
reentrant phenomena have been found in mode-couplingitegral. Thus, a glass transition must occur at some fixed
studies of the RPM9], of screenedcharged hard spheres i the Debye region of the phase diagram. We fiid
[17] provided that the screening length was chosen suffi= 13,0 for the critical plasma parameter of the HSJ.

ciently large, and in a theoretical investigation of macro- The phase diagram of the RPM from RE9] is also in-
ionic suspensionfl8]. In the low-density part of the reen- cjyded to demonstrate that the qualitative form, and in par-
trant region, 10°<7<5x10"°, the HSJ glass transition ticular the ability to form a Wigner glass, do not depend on
curve exhibits a power lawp=I'® with an exponente  the specific model system. This supports our view that the
~8.14. So far, neither this behavior nor the reentrant phereentrant phenomenon and the Wigner glass found in the
nomenon could be explained theoretically. RPM are not artifacts of a model system but general features

Even for very low densitiesy<<10~°, mode-coupling ef-  of Coulomb systems caused by mode-coupling effects.
fects obviously still lead to a structural arrest of the fluid of

charged particles if temperature is sufficiently low. This is
rather surprising, because the static structure factor does not
exhibit any peaks in this limit—irhigh-densityliquids, the Some of the Debye-Waller factors that were calculated
first peak inS(q), reflecting a close packing of the system, along the phase transition line of Fig. 1 are shown in Fig. 2.
was considered to be the driving factor for the glass transiThe corresponding input information, the structure factor
tion [7,19]. S(q), is plotted in Fig. 3. For the high-density glass phase,
The melting curve of the HSJ takes on the fodh f(q) has the form known from previous calculatiofib5],
=const, ory=(T*)3, for <10 ’. This result can be un- especially the dominant peak @t=70 ! reflecting the cor-
derstood from the fact that the static structure takes on Debyeesponding close-packing peak in the structure fa8@y).
form, As the critical density is decreased, this peak shifts to lower

IV. DEBYE-WALLER FACTOR
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FIG. 3. Structure facto8(q) of the HSJ for the same and I’ FIG. 4. HSJ exponent parametgr (solid) and characteristic
as in Fig. 2. exponents (dotted ling andb (dashed as functions of the critical

packing fractionz,.

wave humbers and its height decreases. This is also the case
for the S(q) peak, signaling the decay of the close-packeceter, the(nondegenerate, properly normalizetght and left
structure of the high-density glass. eigenvectorse(q) and e(q), respectively, of the stability

At very low densities, where the static structure takes ormatrix
Debye form, Eq(13), f(q) becomes extremely narrow. This
can be understood directly from rescaling E@id) as ex-  C(9,k):=[1—f(k)]*Z,28S(k)S(p)V(a;k;p)f(p)/Q?(q)
plained in connection with th&® behavior of the transition . . . )
line. It is found that in the Debye limit, the critical Debye- have to be determined at a transition point using an appro-
Waller factor can be written as,(q/qp), wheref is a fixed ~ Priate wave vector mesh. _The exponent parameter of the
master function, while the relevant wave number sepje transition point is then obtained from
vanishes likep'® for 7—0 on the transition line. In contrast
to the static structure, which exhibits no peaks at all, there A= () B2S(K)S(p)Q~2(q)V(g:k;p)
remains a peak in the Debye-Waller factomat qp, . gkp

The propert =0)=0, which is clearly visible in Fig.
2, is dupe th)) my(;r(r?entu)m conservation. Th)i/s can be segen as X[1-fOT[1-f(p)]%e(ke(p),

follows: Overall momentum conservation requires the deter:,de the exponents andb of the power laws that appear in

minant of the matrixf(""c(q;_t-:oo) to vanish likeg? for  the solution of Eq(2) are determined by the equatidi(1
small wave numbers, a condition that is obeyed by the mode-. x)2/T'(1—2x) =\, which has the solutions=a andx=

coupling approximatiori13]. It is clear from the derivation _, Figure 4 shows a plot of the values Xf together with
of Sec. Il, however, that the background species does NGhe corresponding exponengsand b, along the transition
carry any momentum. This leaves the momentum consenvame For high temperatures, the exponent parameter ap-
tion condition for the matrix element for species 1 only, proaches the limiting value 0.734, which is in agreement
(relative deviation~3%) with the value 0.758 found for
KMC(qit=o0)xq? for g—0. (15) neu_tral hard spherdd5]. As conjgctured by Gae [19], A
varies only between 0.5 and 1 in the whole density range
studied. At small densitiey<<10~*, \ takes on extraordi-
The fact that2?(q) approaches thénon-vanishing plasma  narily small values X <0.6), which leads to almost exponen-
frequencyw§|=(Ze)2n/(eom1) in this limit thus leads to tial relaxation behavior to be discussed in the next section.
f(g=0)=0 via Eq.(12). This property, which results from

(16)

the idealization of a homogeneous background, has an im- V. RELAXATION BEHAVIOR
portant consequence for the HSJ as a model system. Since . _
the mass- and charge-density relaxation functigpgq;t) Using the same static structure as in Sec. IV, ERsand

and d)c(q,t) are identical to¢(q,t) in this System,f(q (5) were solved iteratively for 540 time mesh pOintS and 151
=0)=0 implies¢c(q=0; t=)=0. This means that long- Wave numbers. The regular part of the relaxation kernel,

wavelength plasma oscillations cannot be arrested and thihich determines the short-time dynamics and the overall
dielectric constant=1/¢c(q=0; t==) of the HSJ will be  time sAcaIe of the solutions only, was assumed to be diagonal
infinite always, even in the glass phase. The same statemewith K’ q;t)=25(t)wp|(qo)2. This order of magnitude
holds for the OCP. was found in previous studies on the OCH].

From the Debye-Waller factors calculated at the transition A typical result for the(partial) density relaxation func-
point, the Gize exponent paramet&rcan be obtainef20].  tion ¢(q;t) for low densities is shown in Fig. 5 as a plot at
It characterizes the dynamical behavior predicted by MCTa fixed wave numbegq, as the system approaches the fluid-
near the glass transition. To calculate the exponent paranglass transition aty~0.103<10 4. The critical long-time
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relaxation known from supercooled high-density liquids. The
small values of the exponent parameteshown in Fig. 4 for
low 7 imply that the primary relaxation is almost Debye-like
for all densitiesp<<10~4.

Apart from the peculiarity of almost-exponential relax-
ation, all predictions that were derived for the liquid-glass
transition at higher densiti¢20,19, e.g., the factorization of
time- and wave number dependencedifqg;t) — f(q,) for
long times, continue to be valid at low densities. It must be
mentioned that the extremely small values:0.6 at low
densities are a special feature of the HSJ, and were not found
in the RPM, wherex=0.77 in the low-density limif10].

. - o Therefore, the exponential relaxation should not be consid-
10 10 0 ered as an universal prediction of MCT for Wigner glasses,
toy, but rather as a special feature of the HSJ model system.
Nevertheless, it is an interesting question whether it is found
experimentally, because this would allow an estimation of
the relevance of the MCT/HSJ model system for Wigner
glass experiments.

®(9p:t)

1

10

FIG. 5. Density relaxation functiogh(qg;t) of low-density HSJ
at go=0"1. Curves correspond toyp~0.103x1074, (T*
—T%)/TE=3"" for n=1,...,11, and T;~0.002 71. Dotted:
power law 0.453-0.2 2—-9.1x10 %" with a=0.382 andb
=0.916.
VI. TRANSPORT PROPERTIES

limit £°(qo)~0.455 expected at the transition point is clearly A. Diffusion

visible as a plateau value. By analyzing the MCT equations The mobility of individual particles within the fluid is
analytically [20,19, one finds thaté(qo;t) approaches described by the diffusion constabt This parameter should
f¢(do) as a power law<t 2. This initial relaxation process is e easily accessible in Wigner glass experiments, because it
referred to asp relaxation. At a strongly temperature- can be measured directly from the observation of particles in
dependent timer,,#(do;t) drops down from the plateau the fluid. TheoreticallyD is determined by the incoherent
with another power lawx—t°, and approaches zero. The rejaxation function d(q;t):=pexplig-[r§(t) —ri(t

latter process is the so-calledrelaxation or primary relax-  =0)]}) for q+0, which can be obtained within MCT by
ation. Thea-relaxation time scale,, is predicted to obey the  golying the set of equatiori]

power law 7,(T—T.) ” with the exponenty:=1/(2a)
+1/(2b). To demonstrate that these predictions hold for the -B
numerically calculated function, the two asymptotic power dyq,2)=
laws are also included in Fig. 5, and the transition point was
approached using temperaturdg with (Tg—T})/T}
=3"", n=1,2,3... . This leads to anr-relaxation time K(0,2)=K5%a,2)+K(q,2), (18)
that increases by constant factors.

If properly rescaled, the relaxation function of the super- MC vtzhn 1 ) 5
cooled low-density fluid looks qualitatively similar to the Ks (Qit)zﬁvzk: kic(k)“@ (k) @([q—k|;1),
relaxation functions known from systems near the high- (19)
density glass transition. As mentioned in Sec. IV, the rel-

evant length scale get; larger and Iarger at low densme%vherevtzhzzll(,[;’ml) denotes the thermal particle velocity.
Therefore,¢(q;t) (considered as a function of) becomes  Note that the coherent relaxation functidr(q:t) must be
increasingly narrow in the low; region. It is remarkable, | own before®(q;t) can be determined. The frequency-

however, to see that in the low-density Coulomb fluid Wegependent generalized diffusion constBrfw) is given by
find oscillations of¢(q;t) with timet which are reminiscent

z+ g%v2/z+K(q,2)’ an

of the (long-wavelength plasma oscillation. Such oscilla- 2
tions are characteristic of the long-range Coulomb potential. D(w)= limIm 7t (20)
They have neither appeared in supercooled binary mixtures q—0 w+K{(q,w+i0)

of neutral particlegcf. Fig. 6 of Ref.[22]) nor in the high-
density regionwhere Coulomb interactions are suppregsed AssumingKg(q;t) =20w,,(t), Equations(17)—(19) were
of the present systerttf. Fig. 7.1 of Ref[23]). solved iteratively. The resulting diffusion constant is plotted
The small valuex =0.543 predicted for the transition at in Fig. 6. The most striking feature is the rapid decrease of
7=0.103< 10 * leads toa=0.382 andb=0.916. The expo- the static valueD =D(w=0) as the glass transition is ap-
nentb that rules the primary relaxation is therefore signifi- proached. MCT predicts a vanishing Bfwith a power law
cantly larger than known from high-density systems, whergT—T.)? near the glass transition, whefeis the exponent
A~0.750 impliesb~0.558. This results in a comparably defined in section \J20]. This behavior is clearly visible in
abrupt drop from the plateau value at the beginning of thehe inset of Fig. 6. Physically, the vanishing Bfupon ap-
a-relaxation process and a relaxation that is much closer tproaching the low-density glass transition can be understood
the simple exponential Debye relaxation than the stretehed by considering that diffusion is blocked by rapidly increasing
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FIG. 6. Generalized diffusion constab{ w) of the HSJ for the
same parametersp(T*) as in Fig. 5. Dashed: MCT power law FIG. 7. HSJ localization length at melting as function of tem-
asymptote 2.810 °w! °+0.350'"2 with a andb as in Fig. 5.  peratureT* (solid) and Lindemann criteriomq=0.10 (dashegl
Inset:D as a function of T* —T})/T% (circles. Solid: power law  Inset: Same data as a function of (solid), and power law
LH(T* = T)/TH]” with y:=1/(2a) + 1/(2b) = 1.852. 0.027~ 1% (dot-dashej

effective particle diameters. Neglecting screening effects, théon [24], which predicts melting ifr, exceeds 10% of the
average thermal energy Bt=10 and»=10"6, e.g., allows particle diameter. As found in previous studies on different
two particles to approach each other no closer than about 50p0del system$7,25], the high-density glass transition pre-
times the particle diameter! Even if the systémoksvery dicted by MCT is in agreement with this criterion. At low
dilute, it is a strongly overlapping packing of soft effective densities, however, the localization length of particles in the
Coulomb spheres. The slowing down of diffusion processedVigner solid can be much greater than predicted by the Lin-
due to this effect will eventually prohibit crystallization of demann criterion. Our calculations predict a criticgl of
the low-density fluid experimentally if it is cooled rapidly about 2.3 at »=10"°, for example. Such large values for
enough, and is therefore responsible for the glass transitiory have also been observed experimentally, e.g., in the video
at low densities. images shown in Ref26]. These results indicate that the

The two power laws that rule the frequency dependenc@articles of a Wigner solid are trapped in extremely flat,
of D(w) can be explained by considering the asymptoticextended potential minima.
solution for ®(q;t) at the transition poinf20]. One finds Similarly to the Debye-Waller factors, the Lamb-
D(w)x ' in the a-relaxation region, an® (w)*w**in MoRbauer factord(q) will also fall onto a single master
the frequency range correspondingdaelaxation, which is  function if rescaled by the Debye shielding lengify' .
clearly reproduced by our numerical calculations. If theseThus, their curvature afj=0, which is proportional ta,
power laws are identified in experimental data, the values foshould diverge as @513/ along the transition line,
the exponents andb could be used to determine the expo- where 7—0 andT* « 2. The inset of Fig. 7 demonstrates
nent parametex experimentally. that this property is correctly reproduced by our numerical

results.
B. Localization length

On the glassy side of the transition, the particles are lo- C. Shear viscosity

calized, so thaD=0. Here, the motion of a single tagged  The most striking signature of the high-density glass tran-

particle can be characterized by its localization length sition is the dramatic increase of the shear viscositgf the
fluid. Therefore, it is an important question whether this in-
7?*f4q) crease is also predicted for the supercooled fluid at low den-

ro=3lim([re(t=0)—ri’(1)]%) =~ lim
t

N gq—0

9q? ' sities as the Wigner glass phase is approached. Within MCT,
21) 75 can be calculated without any further approximations
from the transversal current relaxation kerfd]

wheref(q):=lim,_.®P(q;t)/B denotes the long-time limit

of the tagged particle relaxation function, the Lamb- KYC(qit)=>, V, (q;k;p)®(k;t)D(p;t), (22)

MoRbauer factor. Despite of its complicated calculation, the kp

functionfy(q) turns out to be very similar to a simple Gauss-

ian, fs(q)wexp(—%réqz). This well-known fact for the high- n 1 ) )

density glas$7] continues to be valid even at very low den- V. (g;k;p) :=ﬁ3—m v Fpa-kkile(k)*=c(kie(p)],

sities. ! (23)
The localization lengtir, at melting obtained from the

Lamb-Md3bauer factor is plotted in Fig. 7 along the transi-which can be obtained from the relaxation functidiq;t).

tion line. An empirical rule for the relation between melting The frequency-dependent generalizatignof the shear vis-

of a solid and the localization length is the Lindemann crite-cosity is then given by
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10’ - : . : Having calculated the diffusion constant and the shear
' ‘ viscosity, we will now make use of the Stokes-Einstein rela-
tion

n=11

no/me,)

kgT
D= , (26)
47nR

10

known from liquid physics to obtain the Stokes radies
=R(7,T*) measuring the effective particle size. The Cou-
lomb fluid near the glass transition does not obey the kinetic
theory of gases even at low densities, because the long-range
interactions remain strong and cannot be neglected in com-
parison to the kinetic energy of particles. Therefore, it is
10 reasonable to assume for the supercooled fluid a relation be-
ofey, tween D and 7, of the Stokes-Einstein form even at low
densities. We calculateR in the vicinity of three different
glass-transition points in they(T*) plane and obtained

107"

n(w)o/(m, )

n=1

5
LI =

FIG. 8. Generalized shear viscosiy(w) of the HSJ for the

same parametersp(T*) as in Fig. 5. Dashed: MCT power law — . _ .
asymptote 1.8107 2 "1+ 2.0x 10 %0® ! with a andb as in R/(/2)~0.8, 1X10f, and 2x10° at high (~0.51), inter-

Fig. 5. Inset: 75 as a function of T* —T*)/T* (circles. Solid: mediate (7~0.10<10 %), and low (7~0.86x<10"°) den-
power law 104[(T* —T¥)/T*]” with y as in Fig. 5. sity, re_SpeCt'Vely; ) .
At high densities and correspondingly high temperatures,
. the Coulomb interaction is strongly suppressed, and we find
ImK_(q,w+i0) (24 that the Stokes radius is roughly equal to the hard-core ra-
2 ' dius. This means that MCT predicts validity of the Stokes-
Einstein relation for the HSJ at high densities, a result that is
supported by a molecular dynamics simulation of uncharged
soft sphere$27] also reporting that the relation is well ful-
filled in the supercooled region.
The long-range Coulomb force will become effective if
v T s temperature is decreased. It will be the dominant interaction
[o20 ]: a [Mwo /o] (25 near the low-density glass transition. At low densities ac-
Pl 1%l cording to our results above, the Stokes radiutakes on
values much larger than the hard-core raditi® and even
The shear viscosity){w) was calculated from the relax- |arger than the average available-sphere radiusn(d) 3.
ation funCtionS Of F|g 5 Under the aSSUmption that the regUThiS can be understood by the fo”owing argument_ The blg
lar part of the transversal current relaxation kernel iscoulomb particles discussed in Sec. VI A will, due to the
KEXa;t)=2wp8(t). The resulting functions, which are |ong range of interactions, have an overlap with very many
plotted in Fig. 8, look qualitatively like the viscosities known neighboring fluid particles. The diffusion constdnhfor such
from the high-density liquid-glass transition. MCT predicts aan inflated particle is expected to be small even if the vis-
divergence of theps proportional to T—T.) " as the tran-  cosity 7, of the fluid is still relatively low. According to Eq.
sition is approached. This property is demonstrated in the2e), this implies a large Stokes radifs
inset of Fig. 8. Note thaty is the same exponent that gov-
erned the behavior of the diffusion constdnt[20]. Simi-
larly to the behavior ofD(w), n{w) also exhibits power
laws in the frequency ranges af and 8 relaxation. The In view of experiments, it is important to judge the rel-
corresponding exponents can be shown totie-1 anda  evance of the results of our study carefully. First of all, nei-
—1, respectively. The viscosity of the low-density fluid turns ther quantum nor relativistic effects are relevant in the low-
out to be several orders of magnitude smaller than that of density region of the phase diagram. A major point of
high-density liquid at a comparable separation from the traneriticism may be that thédealizedform of MCT was used,
sition point. which is known to neglect hopping diffusion and to yield a
It seems counterintuitive to obtain an infinite shear viscossharp transition into a nonergodic glass phase. We argue,
ity for a Wigner glass, which one imagines to be a loosehowever, that the obtained results are still relevant. Hopping
matrix of relatively “soft” spheres. However, it is generally diffusion processes occurred only “occasionally” in the
accepted for the high-density liquid-glass transition that théVigner crystal[5]. Assuming an average hopping time of
divergence of the shear viscosity is an artifact of idealizedry=10" s for an individual particle and a microscopic time
MCT. The results of this version of the theory are only valid scale oft;~10* s, suggests that there are several decades
in a region of low to intermediate viscosity, which we expectof time evolution in Fig. 5 which are not influenced by hop-
to be the case for the Wigner glass as well. The actual rangeing diffusion. Taking hopping processes into account in an
of validity of idealized MCT for supercooled low-density extended MCT[19] will change the relaxation behavior of
fluids can only be determined experimentally—a challengehe supercooled fluid only quantitatively without destroying
for plasma and colloid physicists. qualitative aspects such as plateau formation anand g

7 @)=mynlim
q—0 q

Note that in the units we use, the shear viscositys related
to the kinematic viscosity:=ns/(nm,) by

VIl. CONCLUSION
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relaxation. Although the experimental relevance of the sinand of screened charged hard sph¢i&$. The relaxation is
gularity that appears in idealized MCT is still being dis- qualitatively similar to that predicted for the higher-density
cussed controversially, the transition point of idealized MCTliquid-glass transition, except for an almost exponendal

has always correctly signaled the onset of glassification imelaxation. We proposed the picture of a packing of large
high-density systems. Thus, we expect the formation of &ffective spheres caused by Coulomb repulsion in the
low-density glass in real systems in the proximity of our Wigner glass, which is supported by a vanishing of the dif-
calculated transition curve. fusion constant as the glass transition is approached and by a

On the other hand, we cannot derive any statements owvery large Stokes radius.
the actual range of validity of the power law predictions. It is very exciting that Wigner crystals were found in
Theoretically, they become validsymptotically i.e., for  dusty plasmas, where individual particles can be studied us-
“small” separation from the transition point—possibly in a ing optical microscopes. The realization of Wigmngassesn
region where idealized MCT is no longer experimentally rel-such systems would be a major breakthrough in the research
evant. This point should always be kept in mind when inter-on the glass transition, because one could “see” how the
preting experimental results using MCT. However, experi-individual particles become localized within the glassy ma-
ence from high-density liquids tells us that some asymptotidrix. Until today, rather complicated and expensive scattering
MCT predictions, depending on the system studied, seem texperiments are the only source of microscopic information
have been observed in experime[28§]. on the glass transition.

In summary, we have found that mode-coupling theory
predicts a low-density amorphous solid phase of the HSJ.
The transition is expected to occur B=13 in the low-
density regionp<10~’. The HSJ exhibits the reentrant phe-  This work was supported by the Deutsche Forschungsge-
nomenon found in mode-coupling studies of the R  meinschaft(SFB 3373.
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